MICROLOCAL HOLMGREN'S THEOREM FOR A CLASS OF HYPO-ANALYTIC STRUCTURES

S. BERHANU

ABSTRACT. A microlocal version of Holmgren's Theorem is proved for a certain class of the hypo-analytic structures of Baouendi, Chang, and Treves.

1. Introduction

In [4] Sjöstrand gave a simpler proof of a result of Schapira [3] concerning a microlocal version of Holmgren's theorem for real analytic data. Inspired by [4], in this paper we will extend Schapira's result to a certain class of hypoanalytic structures. The paper is organized as follows: In §2 we discuss the Cauchy-Kovalevska theorem for maximal hypo-analytic structures. In §3 we introduce a class of hypo-analytic structures which we call real hypo-analytic, give a statement of the main theorem of this article, and derive two corollaries. A lemma is included in the same section and is used in the proof of the main theorem which appears in §4.

2. CAUCHY-KOVALEVSKA FOR HYPO-ANALYTIC STRUCTURES

We are interested in the hypo-analytic structures introduced by Baouendi, Chang, and Treves in [1]. We briefly recall the relevant concepts here.

Let Ω be a smooth manifold of dimension m. A hypo-analytic structure of maximal dimension on Ω is the data of an open covering $\{U_{\alpha}\}$ of Ω and for each index α , of $m \ C^{\infty}$ functions $Z_{\alpha}^{1}, \ldots, Z_{\alpha}^{m}$ satisfying the following two conditions:

- (1) $dZ_{\alpha}^{1}, \ldots, dZ_{\alpha}^{m}$ are linearly independent at each point of U_{α} ; (2) if $U_{\alpha} \cap U_{\beta} \neq \emptyset$, there are open neighborhoods O_{α} of $Z_{\alpha}(U_{\alpha} \cap U_{\beta})$ and O_{β} of $Z_{\beta}(U_{\alpha} \cap U_{\beta})$ and a holomorphic map F_{β}^{α} of O_{α} onto O_{β} such that $Z_{\beta} = F_{\beta}^{\alpha} \circ Z_{\alpha} \text{ on } U_{\alpha} \cap U_{\beta}.$

We will use the notation $Z_{\alpha}=(Z_{\alpha}^1,\ldots,Z_{\alpha}^m):U_{\alpha}\mapsto C^m$. A distribution h defined in an open neighborhood of a point p_0 of Ω is hypo-analytic at p_0 if there is a chart $(U_{\alpha}\,,\,\bar{Z}_{\alpha})$ of the above type whose domain contains p_0 and a

Received by the editors September 11, 1989.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 35A20; Secondary 35S99. It is a pleasure to express my gratitude to my teacher and adviser Professor F. Treves.

holomorphic function \tilde{h} defined on an open neighborhood of $Z_{\alpha}(p_0)$ in C^m such that $h = \tilde{h} \circ Z_{\alpha}$ in a neighborhood of p_0 . By a hypo-analytic local chart we mean an m+1-tuple (U,Z^1,\ldots,Z^m) [abbreviated (U,Z)] consisting of an open subset U of Ω and of m hypo-analytic functions whose differentials are linearly independent at every point of U.

In [2] we introduced hypo-analytic differential operators which by definition map hypo-analytic functions to hypo-analytic functions. A linear differential operator P on Ω is hypo-analytic if and only if for every hypo-analytic local chart (U,Z^1,\ldots,Z^m) , U sufficiently small, and vector fields M_1,\ldots,M_m satisfying $M_jZ^k=\delta_j^k$ we have: $P=\sum_{|\alpha|\leq n}a_\alpha(x)M^\alpha$, where each a_α is a hypo-analytic function on U. Let p be an arbitrary point of Ω . The differentials of the germs of hypo-analytic functions at p make up a complex vector subspace of the complex cotangent space $CT_p^*\Omega$. This subspace, which we denote by T_p' , has dimension =m. Condition (2) in the definition of hypo-analytic structures implies that the subspace T_p' makes up a smooth vector subbundle T' of the complex cotangent bundle $CT^*\Omega$. T' will be referred to as the structure bundle.

We now introduce the concept of hypo-analytic submanifolds. By a submanifold of Ω we mean a subset of Ω equipped with a C^{∞} structure such that the natural injection into Ω is a C^{∞} map with injective differential. Let M be a submanifold of Ω . We shall denote by π_M the natural map $T^*\Omega_{|M} \mapsto T^*M$ and by π_M^C the analogous map of the complex cotangent bundles. In general, $T_M' = \pi_M^C(T')$ is not a vector bundle.

Definition 2.1. A submanifold M of Ω is called a hypo-analytic submanifold if it is equipped with a hypo-analytic structure whose structure bundle is identical to T_M' and which has the following property: Given any hypo-analytic function f on an open set $\Omega' \subset \Omega$ which intersects M, the restriction of f to $M \cap \Omega'$ is hypo-analytic.

Simple examples show that the second property in the above definition is not redundant.

Proposition 2.1. Suppose Σ is a hypo-analytic submanifold of Ω whose structure bundle has dimension m-k. Then each point $q \in \Sigma$ is contained in a hypo-analytic chart $(U; Z^1, \ldots, Z^m)$ of Ω with Z^{m-k+1}, \ldots, Z^m all vanishing on $U \cap \Sigma$.

Proof. Let $q \in \Sigma$ and $(U; W^1, \ldots, W^m)$ be a hypo-analytic chart for Ω around q. Since the differentials dW^1, \ldots, dW^m span CT^*U , without loss of generality we may assume that $\pi_{\Sigma}^C(dW^1), \ldots, \pi_{\Sigma}^C(dW^{m-k})$ span $CT^*(U \cap \Sigma)$.

Moreover, $(U \cap \Sigma, W^1_{|\Sigma}, \dots, W^{m-k}_{|\Sigma})$ is a hypo-analytic chart in Σ since Σ is a hypo-analytic submanifold of Ω .

Now W^{m-k+1} , ..., W^m all restrict to hypo-analytic functions in Σ . Therefore, there are holomorphic functions H_1 , ..., H_k such that $W^{m-k+j}(x) = H_j(W^1(x), \ldots, W^{m-k}(x))$ for each $x \in \Sigma \cap U$ and $1 \le j \le k$. Here the set U may have to be contracted. For $x \in U$, let

$$Z^{j}(x) = W^{j}(x), \qquad 1 \le j \le m - k,$$

and

$$Z^{l}(x) = W^{m-k+l}(x) - H_{l}(W^{1}(x), \dots, W^{m-k}(x))$$

when $m - k \le l \le m$.

Then $(U; Z^1, \ldots, Z^m)$ is a hypo-analytic chart on Ω satisfying the properties in the proposition.

Remark 2.1. If Σ is a hypo-analytic submanifold of Ω , then the dimension of Σ is the same as the dimension of its structure bundle.

Suppose now P is a hypo-analytic differential operator on Ω . We would like to introduce the concept of noncharacteristic hypersurfaces. Let Σ be a hypo-analytic hypersurface of Ω . By Proposition 2.1, Σ is locally given by H(x)=0, where H is hypo-analytic and $dH\neq 0$. If $(U;Z^1,\ldots,Z^m)$ is a hypo-analytic chart for Ω near a central point $q\in \Sigma$, then P can be written as $P=\sum_{|\alpha|\leq k} a_{\alpha}(Z(x))M^{\alpha}$ and $H(x)=\tilde{H}(Z(x))$ for some holomorphic functions a_{α} and \tilde{H} in a neighborhood of Z(q) in C^m . We push everything by the map Z into C^m near Z(q) and write $P^Z\left(z,\frac{\partial}{\partial z}\right)=\sum_{|\alpha|\leq k} a_{\alpha}(z)(\frac{\partial}{\partial z})^{\alpha}$ and $\Sigma^Z=\{z\in C^m:\tilde{H}(z)=0\}$.

Since $dH \neq 0$, Σ^Z is a complex submanifold of C^m of complex codimension 1 passing through Z(q).

If $(V; W^1, \ldots, W^m)$ is another hypo-analytic chart about q, let G be a biholomorphism near Z(q) in C^m such that $(W^1, \ldots, W^m) = G(Z^1, \ldots, Z^m)$. Then $P_k^W(w, \frac{\partial}{\partial w})$ and Σ^W are the expressions of $P_k^Z(z, \frac{\partial}{\partial z})$ and Σ^Z in the coordinates w^1, \ldots, w^m of C^m . Hence, in particular, Σ^Z is noncharacteristic with respect to P^Z if and only if Σ^W is noncharacteristic with respect to P^W .

This observation justifies the following definition in which we use the same notations as above.

Definition 2.2. We say Σ is noncharacteristic with respect to P at a point $q \in \Sigma$ if Σ^Z is noncharacteristic with respect to $P^Z(z, \frac{\partial}{\partial z})$ at Z(q) for some hypo-analytic chart $(U; Z^1, \ldots, Z^m)$ about q.

We can now formulate a Cauchy-Kovalevska theorem for a hypo-analytic differential operator and hypo-analytic Cauchy data on a noncharacteristic hypo-analytic hypersurface.

Suppose now P is a hypo-analytic differential operator and Σ is a noncharacteristic hypo-analytic hypersurface with respect to P at the point $q \in \Sigma$. Let

the order of P near q = k. Suppose L is a hypo-analytic vector field not belonging to $CT\Sigma$ at the point q (and hence near q). Then we have:

Theorem 2.1. There is an open neighborhood Ω' of q in Ω such that to every hypo-analytic function f in Ω' and to every set of k hypo-analytic functions u_0, \ldots, u_{k-1} on $\Sigma \cap \Omega'$, there is a unique hypo-analytic function u in Ω' such that

$$Pu = f$$
 in Ω' ,

and for every $j = 0, ..., k-1, L^j u = u_j$ in $\Sigma \cap \Omega'$.

Proof. By Proposition 2.1, $q \in \Sigma$ is contained in a hypo-analytic chart $(U; Z^1, \ldots, Z^m)$ of Ω with Z^m vanishing on $U \cap \Sigma$. Let M_1, \ldots, M_m be the vector fields in U satisfying $M_j Z^k = \delta_j^k$. Then in the chart (U, Z), we may write $P = \sum_{|\alpha| \leq k} a_{\alpha}(x) M^{\alpha}$ and $L = \sum_j c_j(x) M_j$, where the coefficients are all hypo-analytic. The condition $L \notin CT\Sigma$ near q is equivalent to $c_m(x) \neq 0$ for x near q.

Let \tilde{u}_j , \tilde{f} , \tilde{a}_{α} , and \tilde{c}_j be the holomorphic functions defined near $Z(q) \in C^m$ such that $u_i(x) = \tilde{u}_i(Z(x))$ etc.

Set

$$\begin{split} P^Z\left(z\,,\,\frac{\partial}{\partial\,z}\right) &= \sum_{|\alpha| \leq k} \,a_\alpha(z) \left(\frac{\partial}{\partial\,z}\right)^\alpha\,,\\ L^Z &= \sum_{i=1}^m \,\hat{c}_j(z) \frac{\partial}{\partial\,z_j} \quad \text{and} \quad \Sigma^Z = \{z \in C^m: z_m = 0\}. \end{split}$$

The assumptions on Σ and L imply that Σ^Z is noncharacteristic for P^Z and that $\tilde{c}_m(z) \neq 0$ for z near Z(q). Therefore the existence part of Theorem 2.1 follows from the existence part of the holomorphic version of the Cauchy-Kovalevska theorem applied to the problem

$$P^Z \tilde{u} = \tilde{f} \quad \text{near } Z(q) \text{ in } C^m$$

and for $0 \le j \le k-1$,

$$(L^Z)^j \tilde{u} = \tilde{u}_j$$
 near $Z(q)$ in Σ^Z (see [7]).

We just set $u(x) = \tilde{u}(Z(x))$ and observe that $M_j u(x) = \frac{\partial \tilde{u}}{\partial z_j}(Z(x))$ for each j = 1, ..., m. To see the uniqueness, suppose u' is another solution and set v = u - u'. Then

$$Pv = 0$$
 in Ω' and $L^j v = 0$ in $\Sigma \cap \Omega'$

and v is hypo-analytic. Since M_1,\ldots,M_{m-1} all belong to $CT\Sigma$ and v=0 on Σ , it follows that $M_1v=\cdots=M_{m-1}v=0$ on Σ (near q). Now $L=\sum_{j=1}^m c_j(x)M_j$ with $c_m(x)\neq 0$ and Lv=0 on Σ . Therefore $M_mv=0$ on Σ . Moreover, from $L^jv=0$ for $0\leq j\leq k-1$, we deduce that $M^\alpha v=0$ for $|\alpha|\leq k-1$ on Σ . Next, since the coefficient of M_m^k in $P=\sum_{|\alpha|\leq k}a_\alpha(x)M^\alpha$

is nonzero, it follows that on Σ , $M^{\alpha}v=0$ for $|\alpha|\leq k$. Finally, applying the vector fields M_j to the equation Pv=0, we see that $M^{\alpha}v=0$ on Σ for all indices α . Now let \tilde{v} be the holomorphic function near Z(q) in C^m satisfying $v(x)=\tilde{v}(Z(x))$.

We write the power series of v around Z(q) as

$$\tilde{v}(z) = \sum a_{\alpha} (z - Z(q))^{\alpha} \,, \qquad \text{where } a_{\alpha} = \frac{1}{\alpha!} \left(\frac{\partial}{\partial \, z} \right)^{\alpha} \tilde{v}(Z(q)) \,.$$

But then

$$\left(\frac{\partial}{\partial z}\right)^{\alpha} \tilde{v}(Z(q)) = (\boldsymbol{M}^{\alpha}v)(q) = 0 \qquad \forall \alpha$$

Therefore, $\tilde{v} \equiv 0$ near Z(q). Hence $v \equiv 0$ in Ω' .

3. Real hypo-analytic structures and statement of the main result

We will continue to look at a maximal hypo-analytic structure on Ω . We noted that a hypersurface Σ is hypo-analytic if and only if Σ is the zero set of a hypo-analytic function f with nonzero differential. We now strengthen this condition and introduce the following:

Definition 3.1. Σ is said to be a real hypo-analytic hypersurface if every point $p \in \Sigma$ has a neighborhood U_p in Ω , a hypo-analytic function h of a nonzero differential defined on U_p , and $\varepsilon > 0$ such that:

- (1) $\Sigma \cap U_p = \{x \in U_p : h(x) = 0\}.$
- (2) For $c \in C$, $|c| < \varepsilon$, the set $\Sigma_c = \{x \in U_p : h(x) = c\}$ is either \emptyset or a hypersurface.
 - (3) $\bigcup \Sigma_c$ is a neighborhood in U_p of p; $|c| < \varepsilon$.

We note that near each point of Σ , the above definition gives a local foliation of Ω by means of hypo-analytic hypersurfaces.

Example 1. Suppose Ω is a real analytic structure. The real analytic structure can be viewed as a hypo-analytic structure and in this case, any real analytic hypersurface is real hypo-analytic.

Example 2. Consider a hypo-analytic local chart (U,Z) around 0 in a maximal hypo-analytic structure on R^m . Suppose $Z_j=x_j+\sqrt{-1}\ \phi_j(x)$, $j=1,\ldots,m-1$, and $Z_m=x_m+\sqrt{-1}\ \phi_m(x_m)$, where $\phi=(\phi_1,\ldots,\phi_m)$ is real-valued, with zero differential at 0, and $\phi(0)=0$.

Assume that U is small enough so that the mapping $Z=(Z_1,\ldots,Z_m)$: $U\to C^m$ is a diffeomorphism of U onto Z(U). Then $\Sigma=\{x\in U:x_m=0\}$ is a real hypo-analytic hypersurface. In this case, the defining function can be taken to be Z_m .

Lemma 3.2 will show that Example 2 is a typical example.

The proof of the main theorem will use two equivalent formulations of microlocal hypo-analyticity that were developed in [1]. We briefly recall them here.

Sato's Microlocalization. We consider a hypo-analytic local chart (U, Z) of the maximal structure Ω .

In the sequel Γ is a nonempty, acute, and open cone in $\mathbb{R}^m \setminus \{0\}$. For A an open subset of U and $\delta > 0$, let

$$N_{\delta}(A, \Gamma) = \{Z(x) + \sqrt{-1} \ Z_{x}(x)v : x \in A, v \in \Gamma, |v| < \delta\}.$$

Let $B_{\delta}(A, \Gamma)$ denote the space of holomorphic functions on $N_{\delta}(A, \Gamma)$ of tempered growth. More precisely, a holomorphic function f with domain $N_{\delta}(A, \Gamma)$ is in $B_{\delta}(A, \Gamma)$ if it satisfies the condition: to every compact subset K of $N_{\delta}(A, \Gamma)$ there are an integer $k \geq 0$ and a constant c > 0 such that $|f(z)| \leq c(\operatorname{dist}[z, Z(A)])^{-k}$ for all z in K.

In [1] it was shown that if A is sufficiently small and $f \in B_{\delta}(A, \Gamma)$, then for every $\psi \in C_c^{\infty}(A)$,

$$\lim_{t \to +0} \int_{A} f(Z(x) + \sqrt{-1} \ Z_{x}(x)tv) \ \psi \ (x) \ dZ \ (x)$$

exists and is independent of $v \in \Gamma$. Let bf denote the limit distribution.

Definition 3.2. Let $u \in D'(U)$ and $(x, \xi) \in U \times R_m \setminus \{0\}$. We say that u is microlocally hypo-analytic at (x, ξ) if there are an open neighborhood $A \subseteq U$ of $x, \delta > 0$ and a finite collection of nonempty acute open cones Γ_k in $R_m \setminus \{0\}$ $(k = 1, \ldots, r)$ satisfying $\langle v, \xi \rangle < 0$ for every v in each Γ_k and such that the following hold:

for each k there is $f_k \in B_{\delta}(A, \Gamma_k)$ such that in A,

$$u = bf_1 + \cdots + bf_r$$
.

The above definition of microlocal hypo-analyticity in the cotangent space does not depend on the choice of the chart (U, Z) (see [1]).

Definition 3.3. Let $u \in D'(\Omega)$. The hypo-analytic wavefront set of the distribution u is denoted by $WF_{ha}u$ and is defined as

$$\operatorname{WF}_{\operatorname{ha}} u = \{(x, \xi) \in T^*\Omega : u \text{ is not hypo-analytic at } (x, \xi)\}.$$

The FBI Transform. We continue to work in a chart (U,Z) of the maximal structure Ω . Assume that $Z=(Z_1,\ldots,Z_m):U\to C^m$ is a diffeomorphism of U onto Z(U) and that U is the domain of local coordinates x_j $(1\leq j\leq m)$ all vanishing at a "central point" which will be denoted by 0. We will suppose Z(0)=0 and by substituting $Z_x(0)^{-1}Z(x)$ for Z(x) if necessary, we may assume that

$$Z_{x}(0)$$
 = the identity matrix.

Let u be a compactly supported distribution in U. We shall refer to

$$F(u, z, \zeta) = \int_{y} \exp(\sqrt{-1} \zeta \cdot (z - Z(y)) - \langle \zeta \rangle (z - Z(y))^{2}) u(y) dZ(y)$$

as the Fourier-Bros-Iagolnitzer (in short, FBI) transform of u. Here $z \in C^m$, $\zeta \in C_m$ with $|\text{Im } \zeta| < |\text{Re } \zeta|$, and

$$\langle \zeta \rangle^2 = \zeta_1^2 + \dots + \zeta_m^2.$$

In [1], the authors established the following FBI transform criterion for hypoanalyticity. We will state it here in a form that will be of convenience to us.

Theorem 3.1. The following two properties of a compactly supported distribution are equivalent:

- (i) *u* is microlocally hypo-analytic at $(0, \xi^0) \in T^*U \setminus \{0\}$.
- (ii) There is an open neighborhood V of 0 in C^m , a conic open neighborhood \mathscr{C}_0 of ξ^0 in C_m , and constants c, r > 0 such that $|F(u, z, \zeta)| \le c \exp(-r|\zeta|)$ for all z in V and for all ζ in \mathscr{C}_0 .

We are now ready to state the main theorem of this paper.

Theorem 3.2. Let P be a hypo-analytic differential operator and Σ a real hypo-analytic hypersurface which is noncharacteristic for P. Assume $u \in D'(\Omega)$ such that Pu is hypo-analytic. Suppose $\sigma \in T^*\Omega \mid_{\Sigma}$ for which the hypo-analytic Cauchy data of u are microlocally hypo-analytic at $\pi_{\Sigma}(\sigma)$. Then $\sigma \notin WF_{ha}u$.

Remark 3.2. The proof will actually show that it is sufficient to have Pu microlocally hypo-analytic at σ .

From Theorem 3.2 we deduce the following consequences. Σ and P will be as in Theorem 3.2.

Corollary 3.1. Suppose Pu is hypo-analytic at $q \in \Sigma$ and the hypo-analytic Cauchy data of u is also hypo-analytic at q. Then u is hypo-analytic at q.

Proof. Since the hypo-analytic Cauchy data is hypo-analytic at q, it is microlocally hypo-analytic in every direction in $T_q^*\Sigma/\{0\}$. (See [1] for a proof.) Therefore, by Theorem 3.2, u is microlocally hypo-analytic in every direction in $T_q^*\Omega$. Hence by [1], u is hypo-analytic at q.

Corollary 3.2. Suppose Pu=0 and the hypo-analytic Cauchy data of u on Σ is 0. Then $u\equiv 0$.

Proof. By Corollary 3.1, u is hypo-analytic. But then by the uniqueness part of Theorem 2.1, $u \equiv 0$.

The following lemmas will be used in the proof of Theorem 3.2.

Lemma 3.1. Let P be a hypo-analytic differential operator and $\sigma \notin \operatorname{Char} P$. If $u \in \mathscr{D}'(\Omega)$ for which $\sigma \notin \operatorname{WF}_{\operatorname{ha}} Pu$, then $\sigma \notin \operatorname{WF}_{\operatorname{ha}} u$.

Proof. We reason in a chart (U, Z) around 0 where we assume that Z(0) = 0, $dZ(0) = \operatorname{Id}$, $\sigma = (0, \xi^0) \in T^*U$, and U is the domain of local coordinates

 x_j $(1 \le j \le m)$. We can then take $\Re Z_j$ as new coordinates in which $Z(x) = x + \sqrt{-1}\phi(x)$, $\phi(0) = 0$, $d\phi(0) = 0$ and $\phi = (\phi_1, \ldots, \phi_m)$ is real-valued. Moreover, the functions Z_j may be selected so that all the derivatives of order 2 of the ϕ_j vanish at 0. Indeed, if this is not already so it suffices to replace each Z_i by

$$Z_{j} - \frac{\sqrt{-1}}{2} \sum_{k=1}^{m} \sum_{l=1}^{m} \frac{\partial^{2} \phi_{j}}{\partial x_{k} \partial x_{l}} (0) Z_{k} Z_{l}.$$

Let M_j $(1 \le j \le m)$ be the vector fields satisfying $M_j Z_k = \delta_j^k$. To prove the lemma, we will use the FBI transform. First we note that for any $f \in C^1(U)$,

$$\langle df, M_k \rangle = M_k f = \sum_j \langle (M_j f) dZ_j, M_k \rangle \quad \forall k.$$

It follows that

$$df = \sum_{j=1}^{m} (M_j f) dZ_j.$$

Therefore, if g or h has compact support in U, by Stokes' theorem we have

$$\begin{split} 0 &= \int_{\partial U} hg \, dZ_1 \wedge \dots \wedge \widehat{dZ_j} \wedge \dots \wedge dZ_m \\ &= (-1)^{j-1} \left[\int_U [(M_j h)g + h(M_j g)] dZ_1 \wedge \dots \wedge dZ_m \right]. \end{split}$$

Hence

(3.1)
$$\int_{U} (M_{j}h)g \, dZ_{1} \wedge \cdots \wedge dZ_{m} = -\int_{U} h(M_{j}g) \, dZ_{1} \wedge \cdots \wedge dZ_{m}.$$

If U is sufficiently small, in the chart (U, Z) we may write

$$P = \sum_{|\alpha| \le k} a_{\alpha}(x) M^{\alpha},$$

where each a_{α} is hypo-analytic on U.

Since $\sigma = (0, \xi^0) \notin WF_{ha}Pu$, Theorem 3.1 tells us that

$$F(Pu, z, \zeta)$$

$$= \int_{U} \exp(\sqrt{-1}\zeta \cdot (z - Z(y)) - \langle \zeta \rangle (z - Z(y))^{2}) \sum_{|\alpha| \le k} a_{\alpha}(y) M^{\alpha} u(y) dZ(y)$$

has an exponential decay for z near 0 and ζ in a complex conic neighborhood of ξ^0 .

Since $y \mapsto \exp(\sqrt{-1}\zeta \cdot (z - Z(y)) - \langle \zeta \rangle (z - Z(y))^2)$ is hypo-analytic, for each j = 1, ..., m,

$$M_{i}(\exp h(z, \zeta, y)) = [-\sqrt{-1}\zeta_{i} + 2\langle \zeta \rangle(z_{i} - Z_{i}(y))] \exp(h(z, \zeta, y)),$$

where

$$h(z, \zeta, y) = \sqrt{-1}\zeta \cdot (z - Z(y)) - \langle \zeta \rangle (z - Z(y))^{2}.$$

This observation together with the integration by parts formula (3.1) imply the existence of a hypo-analytic amplitude $Q(z, \zeta, y)$ elliptic at σ such that

$$F(Pu, z, \zeta) = \int_{U} \exp(\sqrt{-1}\zeta \cdot (z - Z(y)) - \langle \zeta \rangle (z - Z(y))^{2}) Q(z, \zeta, y) u(y) dZ.$$

By the results of [5], we conclude that $\sigma \notin WF_{ha}u$.

Lemma 3.2. Suppose Σ is a real hypo-analytic hypersurface of Ω . Then each point $p \in \Sigma$ is contained in a hypo-analytic chart (U, Z_1, \ldots, Z_m) , where U is the domain of local coordinates (U, x_1, \ldots, x_m) in which

$$Z_j = x_j + \sqrt{-1}\phi_j(x)$$
 for $1 \le j < m$

and $Z_m = x_m + \sqrt{-1}\Psi(x_m)$, where

$$(\phi_1, \ldots, \phi_{m-1}, \Psi)$$
 is real-valued and $\Sigma \cap U = \{x \in U : x_m = 0\}.$

Proof. By Proposition 2.1, there is a chart (U, Z) of Ω near p such that

$$\Sigma \cap U = \{x : Z_m(x) = 0\}.$$

Since $d(Z_1|_{\Sigma})$, ..., $d(Z_{m-1}|_{\Sigma})$ are linearly independent, by making linear substitutions if necessary, we may assume that $d(\Re Z_1|_{\Sigma})$, ..., $d(\Re Z_{m-1}|_{\Sigma})$ are independent.

We may then take $\Re Z_1,\ldots,\Re Z_{m-1}$ as coordinates on Σ . By multiplying Z_m by $\sqrt{-1}$ if necessary, we may also assume that $\Re Z_1,\ldots,\Re Z_m$ are coordinates in U (all this locally near p)

Then

$$Z_j = x_j + \sqrt{-1}\phi_j$$
, $Z_m = x_m + \sqrt{-1}\Psi(x)$, $1 \le j < m$,

and since $Z_m|_{\Sigma \cap U} = 0$, we have

$$\Sigma\cap U=\{x\in U:x_m=0\}.$$

Next let h be the defining function of Σ near p satisfying the conditions of Definition 3.1. Write $h(x) = \tilde{h}(Z(x))$, where \tilde{h} is holomorphic.

Since $h|_{\Sigma} = \tilde{h}(Z_1, \ldots, Z_{m-1}, 0)|_{\Sigma} = 0$ and the image of Σ under (Z_1, \ldots, Z_{m-1}) is a totally real manifold of maximal dimension in C^{m-1} , it follows that

$$h(x) = \tilde{h}(Z_1(x), \dots, Z_m(x)) = \tilde{h}(Z_m(x)).$$

Now since $dh \neq 0$, \tilde{h} is invertible. Hence, for any constant $c \in C$,

$$h(x) = c$$
 iff $Z_{m}(x) = \tilde{h}^{-1}(c)$.

It now follows from Definition 3.1 that $Z_m = x_m + \sqrt{-1} \Psi(x_m)$.

4. Proof of Theorem 3.2

Lemma 3.2 permits us to reason in a local hypo-analytic chart (U, Z), where U is also the domain of local coordinates (U, x_1, \ldots, x_m) centered at 0 with $Z_j = x_j + \sqrt{-1}\phi_j(x), \ 1 \le j < m, \ Z_m = x_m + \sqrt{-1}\Psi(x_m), \ \Sigma$ is given by $x_m = 0$ and $\sigma = (0, \xi_0)$.

We may also assume that Z(0) = 0, $dZ(0) = \operatorname{Id}$, $\phi''(0) = 0$, and $\Psi''(0) = 0$. Let M_j $(1 \le j \le m)$ be the vector fields satisfying $M_j Z_k = \delta_j^k$. If $p \in \Sigma$ and $1 \le j < m$, then $(M_j)_p \in CT_p\Sigma$. Moreover, after multiplication by a nonvanishing hypo-analytic function, P will have the form

$$P = M_m^n + \sum_{|\alpha| \le n, \alpha, \dots \le n} a_{\alpha}(x) M^{\alpha},$$

where the a_{α} are all hypo-analytic functions. Since Pu is hypo-analytic, it follows that u is a C^{∞} function of x_m valued in the space of distributions in the variable $x' = (x_1, \ldots, x_{m-1})$ (see [8]). In particular, the trace of u on Σ is well defined.

We may therefore restate the theorem as:

Suppose Pu is hypo-analytic and $(0', \xi') \in T_{0'}^*\Sigma$ such that $(0', \xi_0') \notin$ $\operatorname{WF}_{\operatorname{ha}}(M_m^j u(x',0))$ for $0 \le j < n$. Then $(0,(\xi_0',\xi_n)) \notin \operatorname{WF}_{\operatorname{ha}} u$. Since the statement is purely local, we may assume that the support of u is

contained in a set of the form

$$\{x': |x'| \le T/2\} \times (-T, T)$$
 and $\{(x', 0): |x'| \le T\} \subseteq \Sigma$.

For $t \in (-T, T)$, let $\Sigma_t = \Sigma \times \{t\}$ and $\Omega_t = \{(x', x_m) \colon |x'| < T/2, 0 \le T/2 \}$ $x_m < t \text{ or } t < x_m \le 0$.

We observe that for any j, k, and l,

$$M_i(M_k Z_l) = 0 = M_k(M_i Z_l).$$

Since the differentials dZ_1, \ldots, dZ_m span CT^*U , it follows that the vector fields M_j commute pairwise. This observation together with the integration by parts formula of §3 and the fact that for each t and j < m, $M_i \in CT\Sigma_i$, yield:

$$\int_{\Omega_{l}} (Pu)w \, dZ_{1} \wedge \cdots \wedge dZ_{m} - \int_{\Omega_{l}} u(^{l}Pw) \, dZ_{1} \wedge \cdots \wedge dZ_{m}$$

$$= \sum_{j+k \leq n-1} \int_{\Sigma_{l}} (M_{m}^{j}u)(B_{jk}(x, M')M_{m}^{k}w) \, dZ_{1} \wedge \cdots \wedge dZ_{m-1}$$

$$- \sum_{j+k \leq n-1} \int_{\Sigma_{0}} (M_{m}^{j}u)(B_{jk}(x, M')M_{m}^{k}w) \, dZ_{1} \wedge \cdots \wedge dZ_{m-1},$$

where the B_{ik} are hypo-analytic differential operators in M_1, \ldots, M_{m-1} of order n-1-j-k.

For $\alpha=(z_0',\xi')\in C^{m-1}\times (R_{m-1}\setminus\{0\})$ and $\tau\in C$ satisfying $1<|\tau|< C_0$, $|\Im \tau|<\varepsilon\Re \tau$ (ε and C_0 to be determined later), set

$$V_{\alpha,\tau}(z') = \exp(\sqrt{-1}(z'_0 - z') \cdot \xi' - \tau |\xi'| (z'_0 - z')^2).$$

Since ^tP is a hypo-analytic differential operator, let

$${}^{t}P = \sum_{|\alpha| \le n} c_{\alpha}(x) M^{\alpha},$$

where each $c_{\alpha}(x) = \tilde{c}_{\alpha}(Z(x))$ for holomorphic \tilde{c}_{α} . Set

$${}^{t}P\left(z,\frac{\partial}{\partial z}\right) = \sum_{|\alpha| \leq n} \tilde{c}_{\alpha}(z) \left(\frac{\partial}{\partial z}\right)^{\alpha}.$$

Let $\tilde{\Sigma}_{t} = \{(z', t) \in C^{m-1} \times \{t\} : |z'| \leq T\}$.

The Cauchy-Kovalevska theorem tells us that there is $t_0>0$ such that if $t\in[-t_0,\,t_0]$ we can find a solution $\tilde{w}(z)=\tilde{w}_{\alpha,\,\tau,\,t}(z)$ in a neighborhood of $\{(z',\,x_m)\in C^{m-1}\times R:|z'|\leq T\,,\,|x_m|< t_0\}$ of the problem

$$(4.2) ^{t}P\left(z,\frac{\partial}{\partial z}\right)\tilde{w}=0, \tilde{w}|_{\hat{\Sigma}_{t}}=\cdots=\left(\frac{\partial}{\partial z_{m}}\right)^{n-2}\tilde{w}|_{\hat{\Sigma}_{t}}=0$$

$$\left(\frac{\partial}{\partial z_{m}}\right)^{n-1}\tilde{w}|_{\hat{\Sigma}_{t}}=V_{\alpha,\tau}.$$

The solution $\tilde{w} = \tilde{w}_{\alpha,\tau,t}$ can be estimated in terms of the Cauchy data on $\tilde{\Sigma}_t$. Indeed, the Ovcyannikov method (see [6]) implies

 $\exists c > 0$ independent of t, τ , α such that

$$|\tilde{w}_{\alpha,\tau,t}(w',z_m)| \leq c \sum_{|\beta'| \leq n} \sup_{|z'-w'| \leq c|z_m-t|} |\partial_{z'}^{\beta'} V_{\alpha,\tau}(z')|.$$

For $|\beta'| \le n$ we have

(4.4)

$$\begin{split} |\partial_{z'}^{\beta'} V_{\alpha,\tau}(z')| & \leq c_1 (|1+|\xi'|)^n \exp(\langle \Im(z'-z_0')\,,\,\xi'\rangle - |\xi'| [\Re \tau \{(\Re z'-\Re z_0')^2\} \\ & \qquad \qquad - 2\Im \tau \Re (z'-z_0') \cdot \Im (z'-z_0')])\,. \end{split}$$

We are going to be interested in z', z'_0 , where $\Im z'$ is small compared to $\Re z'$ and z'_0 is close enough to 0'. This consideration together with a sufficiently small choice of ε in the definition of τ imply for $|\beta'| \le n$

$$\begin{aligned} (4.5) \quad |\partial_{z'}^{\beta'} V_{\alpha,\tau}(z')| &\leq c_1 (|+|\xi'|)^n \\ & \cdot \exp\left(\langle \Im(z'-z_0')\,,\,\xi'\rangle - \frac{\Re\tau}{2} |\xi'| [(\Re z'-\Re z_0')^2 - (\Im z'-\Im z_0')^2]\right). \end{aligned}$$

Application of (4.5) to (4.3) yields

$$\begin{split} |\tilde{w}_{\alpha,\tau,t}(z', x_m + i \Psi(x_m))| \\ & \leq c_1 (|+|\xi'|)^n \exp\left(\langle \Im(z'-z_0'), \xi' \rangle - \frac{\Re \tau}{2} |\xi'| \\ & \times \left[(\Re z' - \Re z_0')^2 - (\Im z' - \Im z_0')^2 \right] + c |\xi'| |x_m - t| \right). \end{split}$$

Let $w_{\alpha,\tau,t}(x) = \tilde{w}_{\alpha,\tau,t}(Z(x))$. For $\alpha = (z'_0, \xi')$ in a sufficiently small conic neighborhood of $(0', \xi'_0)$ and with $w = w_{\alpha,\tau,t}$ we will estimate the term

$$\int_{\Omega_{\epsilon}} (Pu)w \, dZ_1 \wedge \cdots \wedge dZ_m \quad \text{in (4.1)}.$$

(4.2) tells us that $w = w_{\alpha, \tau, t}$ solves

$$(4.2') v_{\Sigma_{t}} = \cdots = M_{m}^{n-2} w|_{\Sigma_{t}} = 0,$$

and

$$M_m^{n-1}w(x', t) = V_{\alpha, \tau}(Z(x', t)).$$

Since Pu and $w=w_{\alpha,\tau,t}$ are hypo-analytic, we can deform the integration contour from Ω_t to the image of Ω_t under the map

$$(x'\,,\,x_m) \mapsto \theta(x'\,,\,x_m) = Z(x'\,,\,x_m) - \sqrt{-1} \left(d\chi(x') \frac{\xi'}{|\xi'|}\,,\,0 \right)\,,$$

where $\chi(x')$ is a cutoff function $\equiv 1$ near $\Re z'_0$ and d is chosen so that we stay inside the domain of hypo-analyticity.

Along this contour, (4.6) gives the following estimate on $w = w_{\alpha, \tau, t}$:

$$\begin{aligned} (4.7) \quad |w| &\leq c_1 \big(|+|\xi'| \big)^n \\ &\times e^{(-d\chi(x')|\xi'| + \langle \phi'(x), \xi' \rangle - \frac{\Re x}{2} |\xi'| [(x' - \Re z_0')^2 (\phi'(x) - d\chi(x') \frac{\xi'}{|\xi'|} - \Im z_0')^2] + c|\xi'| |x_m - t|)} \end{aligned}$$

(Here
$$\phi' = (\phi_1, \ldots, \phi_{m-1}).$$
)

By using the term $(x'-\Re z_0')^2$ when x' is away from $\Re z_0'$ and the term $d\chi(x')|\xi'|$ when x' is near $\Re z_0'$, we see that w is exponentially decaying along this contour. The latter may require shrinking of the interval $[-t_0, t_0]$ to a smaller interval which we will still call $[-t_0, t_0]$.

It follows that we can find a sufficiently small t > 0 and a sufficiently large $c_2 > 0$ such that

$$\left| \int_{\Omega_{t}} (Pu) w_{\alpha, \tau, t} dZ_{1} \wedge \cdots \wedge dZ_{m} \right| \leq c_{2} \exp \left(-\frac{|\xi'|}{c_{2}} \right)$$

for $|t| \le t_0$ and $\alpha = (z_0', \xi')$ in a small conic neighborhood of $(0', \xi_0')$.

Since $w = w_{\alpha, \tau, t}$ solves (4.2'), formula (4.1) reduces to (4.9) $i(-1)^{n+1} \int (Pu)w \, dZ_1 \wedge \cdots \wedge dZ_m$

$$i(-1)^{n+1} \int_{\Omega_{t}} (Pu)w \, dZ_{1} \wedge \cdots \wedge dZ_{m}$$

$$= \int_{|x'| \leq T} e^{(\sqrt{-1}\langle z'_{0} - Z'(x', t), \xi' \rangle - \tau |\xi'| (z'_{0} - Z'(x', t))^{2})}$$

$$\times u(x', t) dZ_1 \wedge \cdots \wedge dZ_{m-1}(x', t)$$

$$+ i(-1)^{n} \sum_{j+k \leq n-1} \int_{\Sigma_{0}} (M_{m}^{j} u) (B_{jk}(x, M') M_{m}^{k} w) dZ_{1} \wedge \cdots \wedge dZ_{m-1}(x', 0).$$

We consider now the integrals over $\Sigma_0 = \Sigma$. Fix j and $k \ni j+k \le n-1$. Since by assumption $(0', \xi') \notin \operatorname{WF}_{\operatorname{ha}}(M^j_m u|_{\Sigma_0})$, without loss of generality we may assume

$$M_m^j u|_{\Sigma_0} = \lim_{s \downarrow 0} f_j(Z'(x', 0) + \sqrt{-1}sZ'_{x'}(x', 0)v)$$

 $(Z'=(Z_1\,,\,\ldots\,,\,Z_{m-1}))$ for some tempered holomorphic function f_j , and v is in a cone $\,\Gamma_j\subseteq R^{m-1}\,$ satisfying

$$\langle v, \xi_0' \rangle < 0.$$

Hence, in the integral over Σ_0 , we may deform a contour to $Z(x',0) + \sqrt{-1}s\chi(x')Z_x(x',0)v$, where s is chosen sufficiently small and $\chi(x')$ is selected as before.

Estimates analogous to (4.6) are also valid for the derivatives $\{M_m^k w\}_k$. Such estimates and the new contour for each j yields, after enlarging c_2 if necessary,

$$(4.10) \qquad \left| \int_{\Sigma_0} (M_m^j u) B_{jk}(x, M') M_m^k w \, dZ_1 \wedge \dots \wedge dZ_{m-1} \right| \le c_2 \exp\left(-\frac{|\xi'|}{c_2}\right)$$

for $t \in [-t_0, t_0]$ and $\alpha = (z_0', \xi_0')$ in a small conic neighborhood of $(0', \xi_0')$. It follows that (after modifying t_0 and c_2) (4.11)

$$\left| \int_{|x'| \le T} u(x', t) \exp(\sqrt{-1} \langle z_0' - Z'(x', t), \xi' \rangle - \tau |\xi'| (Z'(x', t) - z_0')^2) dZ' \right|$$

$$\leq c_2 \, \exp \, \left(-\frac{|\xi'|}{c_2} \right)$$

for $t \in [-t_0, t_0]$ and $\alpha = (z_0', \xi')$ in a small conic neighborhood of $(0', \xi_0')$. Let $I(t, \tau, z_0', \xi') =$ the integral (without the absolute value) in (4.11). Suppose (4.11) holds in a cone $\Gamma' \subseteq R^{m-1}$ containing ξ_0' .

Let $z_0 = (z_0', z_0'') \in C^{m-1} \times C$ and $\xi = (\xi', \xi_m) \in R_{m-1} \times R$. In order to examine WF_{h2}u at $(0, (\xi_0', \xi_m))$, we have to estimate the FBI:

$$F(z_0, \xi) = \int_{|t| \le t_0} \int_{|x'| \le T} \exp(\sqrt{-1} \langle z_0 - Z(x', t), \xi \rangle - |\xi| (z_0 - Z(x', t))^2) u(x', t) dZ.$$

But since Z_m depends only on t, we get

$$\begin{split} F(z_0, \xi) &= \int_{|t| \le t_0} \exp((z_0^m - Z_m(t)) \xi_m - |\xi| (z_0^m - Z_m)^2) \\ &\qquad \times I(t, |\xi|/|\xi'|, z_0', \xi') \, dZ_m(t). \end{split}$$

We now select C_0 as follows. Since $(0,\xi^0) \notin \operatorname{Char} P$, by Lemma 3.1 \exists a constant $C_0 > 1$ such that if $|\xi| \geq C_0 |\xi'|$, then $F(z_0,\xi)$ decays exponentially for z_0 near 0 in C'''.

Let $\Gamma = \Gamma' \times R$. Pick $\xi = (\xi', \xi_m) \in \Gamma$. To finish the proof, we consider two cases:

Case (i). $|\xi| \ge C_0 |\xi'|$. This was just taken care of.

Case (ii). $|\xi| \leq C_0 |\xi'|$. Then $|\xi| = (|\xi|/|\xi'|) |\xi'| = \tau |\xi'|$ with $1 < \tau < C_0$. Hence (4.11) and (4.12) guarantee the exponential decay of $F(z_0, \xi)$ for z_0 near 0 in C^m .

REFERENCES

- 1. M. S. Baouendi, C. H. Chang, and F. Treves, Microlocal hypo-analyticity and extensions of CR functions, J. Differential Geom. 18 (1983), 331-391.
- S. Berhanu, Propagation of hypo-analyticity along bicharacteristics, Pacific J. Math. 138 (1989), 221-232.
- P. Schapira, Propagation at the boundary and reflection of analytic singularities of solutions of linear partial differential equations, Publ. Res. Inst. Math. Sci. Suppl. 12 (1977), 441–453.
- J. Sjöstrand, Propagation of analytic singularities for second order Dirichlet problems. III, Comm. Partial Differential Equations 6(5) (1981), 499–567.
- 5. ____, The FBI transform for CR submanifolds of C^N , Preprint.
- 6. F. Treves, Ovcyannikov Theorem and hyper-differential operators, Notas de Mat., no. 46, Rio de Janeiro, 1968.
- 7. _____, Basic linear partial differential equations, Academic Press, New York, 1975.
- 8. _____, Introduction to pseudodifferential and Fourier integral operators, I, Plenum Press, 1980.

DEPARTMENT OF MATHEMATICS, TEMPLE UNIVERSITY, PHILADELPHIA, PENNSYLVANIA 19122